DNN accelerator for FPGAs | Ngene

DeepLTK FPGA Add-on

DeepLTK FPGA Add-on is a ready-to-deploy environment designed to harness the performance and effectiveness of FPGAs to accelerate CNNs (Convolutional Neural Networks) for Image recognition and object detection.



When it comes to deployment, there are several platforms to choose from: CPU, GPU or FPGA. Each target has its own advantages and disadvantages. CPUs are the most flexible and allow to design and deploy a large variety of models, as well as implement custom data preprocessing before feeding data into the network. GPUs are de facto the most powerful devices for deployment but at the cost of higher power consumption. FPGAs shine in cases when small physical footprint and low power consumption are required.  


FPGAs can provide up to 5x performance boost while consuming less power compared to embedded CPUs. YOLO (You Only Look Once) tiny version 2 object detection model inference performance comparison on CPU and FPGA is presented below.

Platform description:

  • CPU - Intel Core i7-5650U (NI IC-3173 )

  • FPGA - Xilinx Kintex-7 XC7K160T NI (IC-3173)




  • Convolutional kernel size: 3x3

  • Maximum image size: 512x512px

  • Maximum number of layers (Conv-Activte-Pool): 16

  • Supported NI platforms: Kintex-7, Zynq-7000 (NI IC-3173, NI sbRIO-9607)

Deep Neural Network Accelerator for FPGAs employs 8-bit fixed point data precision for storing the activations and weights and is capable to achieve similar performance as a single-precision floating-point format.

The Accelerator comes as a precompiled bit-file for a particular FPGA with accompanying API for deploying pre-trained neural networks.​

This product works with Deep Learning Toolkit only, download free trial if you haven't already:


Ngene logo

+374 (95) 724964

3 Hakob Hakobyan st, Yerevan 0033, Armenia

  • youtube
  • facebook
  • linkedin

© 2019 by Ngene. Read Privacy Policy